Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data.

نویسندگان

  • Prathamesh M Kulkarni
  • Nicolas Rey-Villamizar
  • Amine Merouane
  • Narendran Sudheendran
  • Shang Wang
  • Monica Garcia
  • Irina V Larina
  • Badrinath Roysam
  • Kirill V Larin
چکیده

BACKGROUND Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). METHODS In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. RESULTS Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. CONCLUSIONS Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speckle variance OCT imaging of the vasculature in live mammalian embryos

Live imaging of normal and abnormal vascular development in mammalian embryos is important tool in embryonic research, which can potentially contribute to understanding, prevention and treatment of cardiovascular birth defects. Here, we used speckle variance analysis of swept source optical coherence tomography (OCT) data sets acquired from live mouse embryos to reconstruct the 3-D structure of...

متن کامل

Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography.

Studying hemodynamic changes during early mammalian embryonic development is critical for further advances in prevention, diagnostics, and treatment of congenital cardiovascular (CV) birth defects and diseases. Doppler optical coherence tomography (OCT) has been shown to provide sensitive measurements of blood flow in avian and amphibian embryos. We combined Doppler swept-source optical coheren...

متن کامل

Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research.

The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the fi...

متن کامل

Development of an Advanced Optical Coherence Tomography System for Radiation Dosimetry

Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...

متن کامل

Live imaging of rat embryos with Doppler swept-source optical coherence tomography.

The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantitative imaging in medicine and surgery

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2015